The Magneto-Resistivity Anisotropy in High Temperature Superconductors Bi₂₂₁₂ & Y₁₂₃

Pawan Kumar Associate Prof., Department of Physics, A.S.(P.G.) College, Sikandrabad, India

The Characteristic shape of resistivity transitions in HTS under magnetic field interaction is mysterious. The magnetoconductivity tensors $\sigma_{xx} \& \sigma_{xy}$ in case of Y123 has been computed under radiofrequency excitations 1-6 MHz range at H=8000G [1]. The Bi₂₂₁₂ characteristics curves Hall potential V_H, Hall coefficient R_H and magnetodynamically stimulated density of electrical carriers N_H along with the temporal development of magnetopotential records had been observed to relate the magnetoresistivity [2,3]. The normal resistivity and conductivity of HTS Bi₂₂₁₂ between superconducting transition temperature below 100K to above 300K had been depicted. The localized density of states is observed to create anisopropy and the oscillatory behaviour of all these parameters even at room temperatures [4,5].

Keywords: Magnetoconductivity tensors, Hall geometry, Electrical carrier density.

1. INTRODUCTION

The HTS had very low conductivity at room temperatures although they are superconductors at moderately high temperatures Bi_{2212} ~85K, Y_{123} ~90K with respect to normal superconductors having superconducting states near absolute zero. In order to regulate the conductivity in HTS even at room temperatures, one has to allow a series of interactions switching the conductivity processes in HTS. In the present attempt MRF excitations had been employed to impart electrical conductivity anisotropy in these materials. The Hall coefficient over a range of temperatures and magnetic field below transition temperature τ reverses their signs [6,7].

2. SYNTHESIS AND PREPARATION

The studies of doping vanadium with (Bi, Pb)₂ Sr₂Ca₂ (Cu_{1-x},V_x)O_y at low concentration of x=0.01-0.03, some enhancement effect in stabilizing the high Tc-phase of superconductivity had been observed. Such High Temperature Superconductivity (HTS) study samples were prepared by conventional solid state reaction method. The Finally ground product then compressed ~2tons/cm² to form cylindrical pellets of dimensions - 1.185cm & thickness - 1.2mm. These pellets were shaped into rectangular bars by further cutting and endowing with the electrods in 4-prob Hall geometry (b=0.2 cm, d=0.2cm, r=0.3mm). The role of

```
Pawan Kumar
```

presence of two additives in Bi-Sr-Ca-Cu-O systems represent an important participation in high Tc oxide superconductor families. At least in three phases with atomic numbers in the ratio in the order Bi, Sr, Ca, Cu namely (2201), (2212) and (2223) their superconductivity transition temperatures were found to be 15K, 85K nad 110K respectively.

3. EXPERIMENTAL STUDY

The samples were taken in 4 or 6 probe Hall geometry attended to constant current source J_x and placed in high magnetic field Hz ~Kilo Gauss range. The radio-frequency generator on Y terminals along with the Hall potential measuring digital millivoltmeter. The magneto potential data yields R_H-factors, N_H, $\sigma_{xx} \& \sigma_{xy}$ etc. The low temperature facility of NPL Laboratory had been employed to measure the conductivity and resistivity. The graphical presentation various physical parameters are shown in Figure 1 - resistance, Figure 2 - conductivity at low T, Figure 3 - magneto potential, Figure 4 - Hall coefficients, Figure 5 - N_H observations of Bi₂₂₁₂ MRF rpranges H=7-10KG and frequency 1-6 MHz.

Fig. 1: Resistance as a function of Temperature for pure Bi : 2212 HTS.

Fig. 2: Conductivity as a function of Temperature for pure Bi : 2212 HTS.

Fig. 3: Hall voltage as a function of Frequency as different magnetic fields for pure Bi : 2212 HTS.

Fig. 4: Hall coefficient as a function of Frequency as different magnetic fields for pure Bi : 2212 HTS.

Fig. 5: MRF stimulated carriers (N_H) as a function of Frequency as different magnetic fields for pure Bi : 2212 HTS.

4. RESULTS, DISCUSSION & CONCLUSION

The striking scaling behaviour of type $\rho_{xy} \sim \rho_{xx} \,^{\beta}$ for longitudinal σ_{xx} and Hall resistivities respectively and $\beta = 1.7$ in case of Y Ba₂ Cu₃0₇ (YBCO) in T-ranges close to onset of Hall signal also seems observable in Bi2212. The experimental results of Samoilov on Bi₂Sr₂CaCu₂O_x in the temperature and the field range where the mixed state has a quasi-2D character and not like to form a vortex- glass state which is quite incongruous to YBCO films where ρ_{xx} , ρ_{xy} behaviour has been argued to be a consequence vortex-glass transition vortex-system with a weak random disorder. In the present manuscript the magneto-RF Conductivity tensors for Bi₂₂₁₂ and Y123 had been presented along with radio frequency dependent Hall potentials, Hall coefficients, differential MRF conductivity and temperature dependent resistivities and conductivities etc. along with density of Hall carriers 10¹³. The trend of experimental observations clearly reveals the anisotropic behaviour and oscillatory character of all these parameters switching the low temperature behaviour of HTS even at room temperatures.

REFERENCES

- M. Galffy and E. Zirgieble; "Hall-effect of bulk YBa₂Cu₃O_{7-δ}", Solid State Commun., Vol. 68, pp. 929-933, 1988.
- [2] J.I. Martin, M. Velez, J. Colino, P. Prieto and J.L. Vicent; "Hall effect and longitudinal resistivity of 123 superconducting thin films: Scaling relations", Solid State Commun., Vol. 94(5), pp. 341-344, 1995.
- [3] J. Luo, T.P. Orlando, J.M. Grabeal, X.D. Wu and R. Muenchausen; "Scaling of the longitudinal and Hall resistivities from vortex motion in YBa₂Cu₃O₇", Phys. Rev. Lett., Vol. 68(5), pp. 690-693, 1992.
- [4] A.T. Dorsey and M.P.A. Fisher; "Hall Effect near the Vortex-Glass Transition in High Temperature Superconductors", Phys. Rev. Lett., Vol. 68(5), pp. 694-697, 1992.
- [5] S.L. Herr, K. Kamaras, D.B. Tanner, S.W. Cheong, G.R. Stewart and Z. Fisk; "Infrared properties of T'-phase R₂CuO₄ insulating compounds", Phys. Rev. B Condens Matter, Vol. 43(10), pp. 7847-7851, 1991.
- [6] A.V. Samoilov; "Universal behavior of the Hall resistivity of single crystalline Bi₂Sr₂CaCu₂O_x in the thermally activated flux flow regime", Phys. Rev. Lett., Vol. 71(4), pp. 617-620, 1993.
- [7] R. Swarup, Pawan Kumar and Dharvendra Singh; "The RF stimulated Magnetoconductivity in HTS", Proc. Of 44th DAE Solid state Physics Symp. (DAE – SSPS 2001), 103, 11 BARC, Mumbai Dec. 26-30, 2001.