ξ-Regular Spaces

M.C. Sharma¹, Poonam Sharma², Shobha Sharma³ and Mandeep Singh^{4,*} ^{1, 2, 3}Department of Mathematics, N.R.E.C. College, Khurja, U.P., India. ^{4,*}Department of Mathematics, S.S.(P.G.) College Shikarpur, U.P., India.

The aim of this paper is to introduce and study a new class of regular space called ξ -regular spaces by using ξ -open sets introduced by R. Devi, S.N. Rajappriya, K.M. Swamy and H. Maki in Scientiae Mathematical Japonicae (2006) and obtained several properties of such a space. Moreover, we obtained some new characterizations and preservation theorems of ξ -regular spaces.

Keywords: ξ , ξ^* , ξ^{**} , $g\alpha$, $rg\alpha$ -closed sets, ξ , ξ^* , ξ^{**} , $g\alpha$, $rg\alpha$ -open sets, ξ -open, Almost ξ -open, Pre ξ -closed, ξ g-closed, Almost ξ g-closed functions, ξ -regular spaces.

2010 AMS Subject Classification: 54D15, 54C08.

1. INTRODUCTION

The aim of this paper is to introduce a new class of normal spaces called ξ -regular spaces by using ξ -open sets and obtained several properties of such a space. R. Devi *et al.* [1] introduced the concept of ξ , ξ^* , ξ^{**} -closed sets and discuss some of their basic properties. R. Devi *et al.* [2] introduced the concept of α - regular space by using α -open sets and obtained several properties of such a space. Throughout this paper (X, τ), (Y, σ) spaces always mean topological spaces X, Y respectively on which no separation axioms are assumed unless explicitly stated.

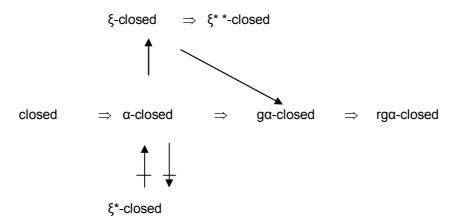
2. PRELIMINARIES

- 2.1. Definition 1: A subset of a space X is called
 - 1. Regular closed [3] if A = cl(int(A)).
 - 2. α -closed [4] if cl(int(cl(A))) \subseteq A.
 - 3. **ga-closed** [5] if α -cl(A) \subseteq U whenever A \subseteq U, and U is an α -open in X.
 - 4. **§- closed** [1] if α -cl(A) \subseteq U whenever A \subseteq U, and U is a g α -open in X.
 - 5. **§***-closed [1] if α -cl(A) \subseteq int(U) whenever A \subseteq U, and U is a g α -open in X.
 - 6. **§****-closed [1] if α -cl(A) \subseteq int cl (U) whenever A \subseteq U, and U is a g α -open in X.
 - 7. Regular α -open [6] if there is a regular open set U such that $U \subseteq A \subseteq \alpha$ -cl(U).
 - 8. **rga-closed** [6] if α -cl(A) \subset U whenever A \subset U and U is regularly α -open in X.

The complement of regular closed (resp. α -closed, $g\alpha$ -closed, ξ -closed, ξ^* -closed, ξ^* -closed, regular α -open) set is said to be **regular open** (resp. α -open, $g\alpha$ -open, ξ -open, ξ^* -open, ξ^* -open, $rg\alpha$ -open, regularly α -closed) set. The intersection of all ξ -closed subset of X containing A is called the ξ -closure of A and is denoted by ξ -cl(A). The union of all ξ -open sets contained in A is called ξ -interior of A and is denoted by ξ - cl(A). The family of ξ -open (resp. ξ -closed) sets of a space X is denoted by ξ O(X) (resp. ξ C(X)).

2.2. Remark 1: Every α -closed (resp. α -open) set is ξ -closed (resp. ξ -open) set.

Definitions stated above, we have the following diagram:



However the converses of the above are not true may be seen by the following examples.

2.3. Example 1: Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then A = {c} is α -closed set as well as ξ , ξ^* *-closed set but not closed set in X.

2.4. Example 2: Let X = {a, b, c, d, e} and $\tau = \{\phi, \{a\}, \{d\}, \{e\}, \{a, d\}, \{a, e\}, \{d, e\}, \{a, d, e\}, X\}$. Then the set A = {a, d, e} is rg α -closed set but not g α -closed set in X.

2.5. Example 3: Let X = {a, b, c, d} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then the set A = {c} is $g\alpha$ -closed set but not closed set in X.

3. ξ-REGULAR SPACES

3.1. Definition 2: A topological space X is said to be **regular space** (resp. α -regular [2], **ξ-regular**) if for every closed set F and a point $x \notin F$, there exist disjoint open (resp. α -open, ξ -open) sets U, V of X such that $F \subset U$ and $x \in V$. Clearly every regular space is ξ -regular space.

3.2. Theorem 1: For a topological space X, the following are equivalent:

(a) X is regular.

ISSN: 2249-9970 (Online), 2231-4202 (Print)

(b) For each closed set F and each $x \in X - F$, there exists disjoint ξ -open sets U and V of X such that $x \in U$ and $F \subset V$.

Proof: It is obvious that (a) \Rightarrow (b), since every open set is ξ -open. (b) \Rightarrow (a), for any closed subset F of X and any point x in X – F, there exists disjoint ξ -open sets U and V of X such that $x \in U$ and $F \subset V$. Now, let G = int(cl(int(U))) and H = int(cl(int(V))). Then we have $x \in U \subset G$ and $F \subset V \subset H$. Since U and V are disjoint, G and H are disjoint open sets of X. This shows that X is regular.

3.3. Corollary 1: A topological space is ξ -regular if and only if it is regular.

3.4. Theorem 2: For a topological space X, the following are equivalent:

(a) X is ξ - regular.

(b) For every point x of X and every open set V containing x, there exists a ξ -open set U such that $x \in U \subset \xi$ -cl(U) $\subset V$.

Proof: (a) \Rightarrow (b). Let $x \in X$ and V be an open set containing x. Then X - V is closed and $x \notin X - V$. By (a), there exist ξ -open sets U and S such that $x \in U, X - V \subset S$ and U $\cap S = \phi$. Since $x \in U \subset X - S \subset V$ and ξ -cl (X - S) = X - S. We obtain the required inclusions: $x \in U \subset \xi$ -cl $(X - U) \subset V$.

(b) \Rightarrow (a). Let F be a closed set and a point $x \notin F$. Then, by (b) there exists a ξ -open set U such that $x \in U \subset \xi$ -cl(U) $\subset X - F$. Therefore, U and $X - \xi$ -cl(U) are the required ξ -open sets.

3.5. Definition 3: A function f: $X \rightarrow Y$ is said to be

1. **almost \xi-open** (resp. ξ -**open**) if f(U) is ξ -open in Y for every regular open (resp. open) set U of X.

2. **almost \xig-closed** (resp. ξ g-closed) if f(F) is ξ g-closed in Y for every regular closed (resp. closed) set F of X.

3. **pre** ξ **-closed** if f(F) is ξ -closed in Y for every ξ -closed set F of X.

3.6. Remark 2: For a function, we have the following implications.

closed $\Rightarrow \alpha$ - closed $\Rightarrow \xi$ -closed $\Rightarrow g\xi$ -closed \Rightarrow almost ξg -closed

3.7. Lemma 1: A surjection f: $X \to Y$ is almost ξ g-closed almost iff for each subset of Y and each $U \in RO(X)$ containing f⁻¹(S), there exists a ξ g-open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

3.8. Theorem 3: If f: $X \rightarrow Y$ is an almost ξ - open almost ξ g-closed continuous surjection and X is regular space, then Y is regular.

Proof: Let y be any point of Y and F be any closed of Y not containing y. There exists a point $x \in X$ with f(x) = y. Since X is regular and f is continuous, there exist disjoint open sets U and V of X such that $x \in U$ and $f^{-1}(F) \subset V$. Now, put G = int(cl(U)) and H = int(cl(V)), then we have $y \in f(U) \subset f(int(cl(U))) = f(G)$ and f(G) is ξ -open because int(cl(U)) $\in RO(X)$ and f is almost ξ -open. Since $f^{-1}(F) \subset V \subset H$ and f is almost ξ g-closed, by Lemma 1, there exists a ξ g-open set W of Y such that $F \subset W$ and $f^{-1}(W) \subset H$. Since F is closed, we have $F \subset \xi$ -int(W). Since G and H are disjoint, f(G) and ξ -int(W) are disjoint ξ -open sets of Y. It follows from **Theorem 1** that Y is regular.

3.9. Corollary 2: If f: $X \rightarrow Y$ is a continuous, ξ -open and ξ g-closed surjection and X is a regular space, then Y is ξ -regular.

3.10. Corollary 3: If f: $X \to Y$ is a continuous, pre ξ -closed bijection and X is ξ -regular space, then Y is ξ -regular.

Proof: Every pre ξ -closed function is ξ -closed and hence almost ξ g-closed. Since f is bijective, it is almost ξ - open and the proof follows from **Theorem 3** and **Corollary 1**.

REFERENCES

- R. Devi, S. N. Rajappriya , K. MuthukumaraSwamy and H. Maki; "ξ-closed sets in topological spaces and Digital Planes", Scientiae Mathematicae Japonicae online, pp. 615-631, 2006.
- [2] R. Devi. K. Balachandran and H. Maki; "Generalized α-closed maps and αgeneralized closed maps", Indian J. Pure Appl. Math., Vol. 29(1), pp. 37-49,1998.
- [3] M. Stone; "Applications of the theory of Boolean rings to general topology", Trans. Amer. Math. Soc., Vol. 41, pp. 374-381, 1937.
- [4] O. Njastad; "On some classes of nearly open sets", Pacific J. Math., Vol.15, pp. 961-970, 1965.
- [5] H. Maki, R. Devi and K. Balachandran; "Generalized α-closed sets in topology, Bull", Fukuoka Univ., Ed. Part III, Vol. 40, pp. 13-21, 1991.
- [6] A. Vadivel and K. Vairamanickam; "rgα-closed sets and rgα-open sets in topological spaces", International Journal of Math. Analysis, Vol. 3(37), pp. 1803-1819, 2009.