M*- Separation Axioms

Dr. M.C. Sharma^{1,*} and Poonam Sharma² sharmamc2@gmail.com and poonamsachin83@gmail.com ^{1,*,2} Department of Mathematics, N.R.E.C. College, Khurja – 203131 (U.P.) India

In this paper, we introduced the concepts of new separation axioms called M^* -separation axioms i. e. $M^*-T_{y_a}$ M^*-T_b , M^*-T_d - spaces by using M^* - open sets in topological space and obtained several properties of such spaces.

Keywords: gM*- closed, gM*- open, rgM*- open sets, M*- T_{2} , M*- T_b , M*- T_d - spaces. 2000 AMS Subject Classification: 54D15, 54C08.

1. INTRODUCTION

In this paper, we introduced the concepts of new separation axioms called M*-separation axioms i.e. $M^*-T_{\frac{1}{2}}$, M^*-T_b , M^*-T_d by using M*-open sets due to Palaniappan et al. [1] in topological space and obtained several properties of such spaces. In 2012, Carpintero et al. [2] introduced a new separation axioms i.e. b- γ -T₀, b- γ -T₁, b- γ -T₂ in topological spaces by using b-open, γ -open sets and obtained several properties of such spaces.

2. PRELIMINARIES

2.1 Definition

A subset A of a topological space X is called

(i) α^* - set [3], if int(cl(int(A))) = int(A).

- (ii) **C** set [3], if A = U \cap V, where U is an open and V is an α^* set in X.
- (iii) α **Cg** closed [4], if α cl(A) \subseteq U whenever A \subseteq U and U is C set in X.
- (iv) **M*-closed** [1], if α cl(A) \subseteq U whenever A \subseteq U and U is α Cg open in X.
- (v) M^*g closed [5], if M^* -cl(A) \subset U whenever A \subset U and U is open in X.
- (vi) **gM* closed** [5], if M*-cl(A) \subset U whenever A \subset U and U is M*-open in X.

The complement of α Cg - closed (resp. M* - closed, M*g - closed, gM*- closed) set is said to be α Cg - open (resp. M* - open, M*g - open, gM*- open) set. The intersection of all M*- closed subsets of X containing A is called the M*- closure of A and is denoted by M*- cl(A). The union of all M*- open subsets of X in which are contained in A is called the M*- interior of A and is denoted by M*- int(A). The family of M*- open (resp. M* -

closed) sets of a topological space X is denoted by **M*O(X)** (resp. **M*C(X)**).

2.2. Remarks

Remark 2.2.1. [1]

Every α-closed (resp. α-open) set is M*- closed (resp. M*-open) set.

For definitions stated above, we have the following diagram:

 $\begin{array}{rcl} \text{closed} \ \Rightarrow \ \alpha \text{-closed} & \Rightarrow \ g\alpha \text{-closed} \ \Rightarrow \ \alpha g \text{-closed} \\ & \downarrow & \downarrow & \downarrow \\ & M^* \text{-closed} \ \Rightarrow \ gM^* \text{-closed} \ \Rightarrow \ M^*g \text{-closed}. \end{array}$

However the converses of the above are not true as may be seen by the following examples:

Example 2.2.1: Let X = {a, b, c, d} and τ = { ϕ , {a}, {b}, {a, b}, {a, b, c}, X}. Then A = {c} is α - closed set as well as M*- closed set but not closed set in X.

Example 2.2.2: Let X = {a, b, c, d} and τ = { ϕ , {a}, {b}, {a, b}, {a, b, c}, X}. Then the set A = {c} is gM* - closed set but not closed set in X.

Remark 2.2.2.

- (i) A subset A of X is M*g-open in X iff $F \subset M^*$ -int(A) whenever $F \subset U$ and F is closed in X.
- (ii) A subset A of X is gM*-closed (resp. gM* open) in X iff A is g-closed (resp. g-open) in X.

3. M*- T1, M*-T12, M*-Tb, M*-Td - SPACES

3.1. Definition

A topological space X is said to be

- (i) T₁ (resp. M*-T₁), if for any distinct pair of points x and y in X, there exists an open (resp. M*-open) set U in X containing x but not y and open (resp. M*- open) set V in X containing y but not x.
- (ii) A $T_{\frac{1}{2}}$ [6], if every g-closed set is closed.
- (iii) A $M^*-T_{\frac{1}{2}}$, if every gM*-closed set is M*-closed.
- (iv) A M^*-T_b , if every M*g closed set in X is closed.
- (v) A M^*-T_d , if every M*g closed set in X is g closed.

M*- Separation Axioms

$$\begin{array}{c} T_1 \Rightarrow T_{\frac{1}{2}} \ \Leftarrow \ M^*\text{-}T_b \ \Rightarrow \ M^*\text{-}T_d \\ \downarrow \qquad \downarrow \\ M^*\text{-}T_1 \Rightarrow M^*\text{-}T_{\frac{1}{2}} \end{array}$$

It can be explained by the following example:

Example 3.1.1: A M*-T_b space need not be M*- T₁. Let X = {a, b, c} and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Since {b} is not M*- closed it is not M*-T₁ and hence it is not T₁. However the family of all M*g- closed sets coincides with one of all closed sets and hence it is a M*-T_b.

3.2. Theorms

Theorem 3.2.1.

- (i) X is a $T_{\frac{1}{2}}$ iff for each $x \in X$, {x} is open or closed in X.
- (ii) X is a M*-T^{1/2} space iff for each $x \in X$, {x} is M*open or M*- closed in X, i.e., X is a M*-T^{1/2} iff a space (X, τ^{M^*}) is T^{1/2} - space.

Theorem 3.2.2.

- (i) If A is M*g-closed, then M*-cl(A) A does not contain non-empty closed set.
- (ii) For each $x \in X$, {x} is closed or its complement $X \{x\}$ is M*g-closed in X.
- (iii) For each $x \in X$, {x} is M*-closed or its complement X-{x} is gM*-closed in X.

Theorem 3.2.3

- (i) Every M*-T_b space is M*-T_d and T_{$\frac{1}{2}$}.
- (ii) Every T_i space is M* -T_i, where i = 1, $\frac{1}{2}$.
- (iii) Every M*-T_i space is M*-T $_{\frac{1}{2}}$.

Proof:

- (i) It is obtained from **Definition 3.1.** [(ii), (iv) and (v)] and **Remark 2.2.2.** (i), (ii).
- (ii) Let X be a T₁ (resp. T½) space and let x ∈X. Then {x} is closed (resp. open or closed by Theorem 3.2.2. (i). Since every open set is M*-open, {x} is M*-closed (resp. M*-closed or M*-open) in X. This implies that X is T₁ (resp. T½ by Theorem 3.2.2 (ii) Therefore X is M*-T₁ (resp. M*-T½).
- (iii) Let X be a M*-T₁ space. Then X is T₁. By **Theorem 5.3** of [6] X is $T_{\frac{1}{2}}$ and hence X is M*-T₂.

ISSN: 2249-9970 (Online), 2231-4202 (Print)

3.3. Proposition

- (i) If X is M^*-T_b then for each $x \in X$, $\{x\}$ is M^* -closed or open in X.
- (ii) If X is M^*-T_d then for each $x \in X$, $\{x\}$ is M^* -closed or g-open in X.

Proof:

- (i) Suppose that, for an $x \in X$, {x} is not M*-closed. By **Theorem 3.2.2.** (iii) and **Remark 2.2.2** (i) and (ii), $X \{x\}$ is M*g-closed set. Therefore $X \{x\}$ closed by using assumption and hence {x} is open.
- (ii) Suppose that, for a $x \in X$, {x} is not closed. By **Theorem 3.2.2 (ii)**, $X \{x\}$ is M*g-closed set. Therefore by using assumption $X \{x\}$ is g-closed and hence {x} is g-open.

4. SEPARATION AXIOMS M*-T_b, and M*-T_d of SPACES ARE PRESERVED UNDER HOMOMORPHISMS

4.1. Definition

A map f: $X \rightarrow Y$ is said to be

- (i) **pre M*-closed** if for each M*-closed set of X, f (F) is M* closed set in Y.
- (ii) **M*** irresolute if for each M*-closed set F of Y, $f^{-1}(F)$ is M*-closed in X.

4.2. Theorems

Theorem 4.2.1.

- (i) A map f: $X \to Y$ is pre M*-closed (resp. pre M*-open) iff its induced map f: $(X, \tau^{M^*}) \to (Y, \sigma^{M^*})$ is a closed (resp. open) map.
- (ii) A map f: $X \to Y$ is M*-irresolute iff its induced map f: $(X, \tau^{M^*}) \to (Y, \sigma^{M^*})$ is continuous.

Theorem 4.2.2.

- (i) A map f: $X \rightarrow Y$ is a homomorphism, then f is a M*- homomorphism.
- (ii) If X is M^*-T_b (resp. M^*-T_d) and f: X \rightarrow Y is a homomorphism, then Y is M^*-T_b (resp. M^*-T_d).

Proof:

(i) Since f: $X \rightarrow Y$ is a homomorphism, then f and f⁻¹ are both open and M*-continuous bijection. It follows from **Theorem 4.16** of Noiri [7] that f and f⁻¹ are M*-irresolute. Therefore, f is M*-irresolute and f is pre M*-closed.

M*- Separation Axioms

(ii) Let f: X → Y is a homomorphism and let F be a M*g-closed set of Y Then by (i) f⁻¹: Y → X is a continuous and pre M*-closed bijection. Hence by **Theorem 4.2.1.** (i), f⁻¹
(F) is M*g-closed in X. Since X is M*-T_b (resp. M*-T_d), f⁻¹ (F) is closed (resp. g-closed) in X. Since f is closed onto (resp. closed and continuous) map, F is closed (resp. g-closed) by **Theorem 6.1** [6] in Y. Hence Y is M*-T_b (resp. M*-T_d).

REFERENCES

- N. Palaniappan, K. Basari Kodi and J. Antony Rex Rodrigo; "On M* closed sets in topological spaces", International J. of General Topology,1(2)(2009),67-77.
- [2] C. Carpintero, N. Rajesh and E. Rosas; "Operation approaches on b-open sets and applications", Bol. Soc. Paran. Mat., Vol. 30(1), pp. 21-33, 2012.
- [3] E. Hatir, T. Noiri and S. Yuksel; "A decomposition of continuity", Acta. Math. Hungar., Vol. 69(4), pp. 145-150, 1996.
- [4] R. Devi and S. Rajeswari; "Strongly αCg irresolute maps", Varahmihir J. of Math. Sci., Vol. 5(1), pp. 159-170, 2005.
- [5] M. C. Sharma, Nidhi Sharma and D. K. Sharma; "Mildly M* normal spaces", International J. of Math. Sci. & Engg. Appls., Vol. 5(V), pp. 165-171, Sept 2011.
- [6] N. Levine; "Generalized closed sets in topology", Rend. Circ. Mat. Palermo, Vol. 19 (1), pp. 89-96, 1970.
- [7] T. Noiri; "On α continuous functions", Časopies Pěst Mat., Vol. 109, pp. 118-126, 1984.