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As we all know that clustering has demonstrated to be one of the most effective 
performance enhancement techniques for object oriented database systems. The 
bulk of work is done on static clustering, that is re-clustering the object base when 
the database is off-line. When 24-hour database access is required this type of re-
clustering cannot be used. In these cases clustering is required which can recluster 
the object base while the database is in operation. We believe that most existing on-
line clustering algorithms lack three important properties. These include: the use of 
opportunism to imposes the smallest I/O footprint for re-organization; the re-use of 
prior research on static clustering algorithms; and the prioritization of re-clustering so 
that the worst clustered pages are re-clustered first. In this paper we present a 
opportunistic priority clustering framework in which any existing off-line clustering 
algorithm can be made on-line and given the desired properties of opportunism and 
clustering prioritization. Most importantly it allows the created algorithm to have the 
properties of I/O opportunism and clustering prioritization which are missing in most 
existing dynamic clustering algorithms. We have used OPCF to make the static 
clustering algorithms Graph Partitioning and Probability Ranking Principle into 
dynamic algorithms. We have used the latest version of VOODB 2007 and OCB 
1998 in comparison to other researchers. 

Keywords: Object-oriented database system, Static clustering, Dynamic clustering algorithms, 
Prioritization, Opportunism. 

 

1. INTRODUCTION 

As we know that CPU is faster than I/O. The performance improvement current rate for 
CPUs is much higher than that for memory or disk I/O. In every 18 months CPU 
performance doubles while disk I/O improves at only 5-8 % per year. On the other hand, 
cheap disk mean object bases will become bigger as database designers realize that more 
data can be stored [1]. An outcome of these facts is that disk I/O is likely to be a blockage in 
an increasing number of database applications. It should also be noted memory is also 
becoming a more rampant source of bottleneck on modern DBMS [2]. However their study 
was conducted on relational DBMS. We believe for object-oriented DBMS where steering is 
common, I/O may be a more common source of bottlenecks. 
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Clustering has been demonstrated to be one of the most effective performance 
enhancement techniques [3]. In early days research of database management systems.  
Steering object access in a object oriented database is a reason behind this. Consequently, 
related objects are often accessed consecutively. The grouping of related objects into the 
same disk page reduces disk I/O by clustering objects in an object oriented database. By 
reducing the number of unused objects that occupy the cache clustering also uses cache 
space more efficiently. Periodical re-clustering allows the physical organization of objects on 
disk to closer reflect the prevailing pattern of object access. 

The majority of existing clustering algorithms are static [4-11]. Static clustering algorithms 
require that re-clustering take place when the database is not in operation, thus prohibiting 
24 hour database access. In contrast, on-line clustering algorithms re-cluster the database 
while database applications are in operation. Applications that require 24 hour database 
access and involve frequent changes to data access patterns may benefit from the use of 
on-line clustering. The problem is compounded when the size of the database is large. In 
such situations the initial physical database organization will become obsolete over time, 
which may result in the object cache containing many objects that are never used. 

In our view, there are a number of properties that are missing from most existing on-line 
clustering algorithms. These properties include: The use of opportunism to impose the 
smallest I/O footprint for re-organization; The re-use of existing work on static clustering 
algorithms; and  a prioritization of reclustering so the worst clustered pages are re-clustered 
first. 

Prioritization refers to choosing the worst clustered page to recluster first. This is very 
important since at each reorganization iteration we can only recluster a small portion of the 
object base (to minimize disruption to the database application), this means we need to be 
very selective on what we recluster first. Reclustering the worst clustered page first ensures 
that we get the largest benefit from reclustering as soon as possible. 

Opportunism refers to only reclustering pages that are currently in memory. This simple rule 
is of critical importance, since the goal of dynamic clustering is to reduce the number of I/Os 
generated by the database application. So if we generate addition I/O overhead while 
performing the dynamic clustering then it is very possible that the cost of clustering may 
outweigh the benefits. By doing clustering opportunistically (only reclustering in memory 
pages) we can make sure no I/O is generated during the clustering process itself. 

Although the great body of work that exists on static clustering [4-11], there has been little 
transfer of ideas into the on-line clustering literature. In this paper we address this omission 
by incorporating two existing and yet vastly contrasting types of static clustering algorithms 
into our on-line clustering framework. These are the ‘probability ranking principle’ algorithm 
(PRP) and the ‘graph partitioning’ algorithms. We show that by using our framework these 
two existing static clustering algorithms surpass an existing and highly competitive on-line 
clustering algorithm DSTC [12] and DRO [13] in a variety of situations. 
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The troublesome nature of re-clustering dictates that on-line clustering algorithms must be 
incremental. This means that only a small portion of the object base can be re-clustered in 
each iteration. When faced with a variety of different portions to target for re-organization, 
the clustering algorithm must select the portion to re-cluster first. 

The re-organization phase of on-line clustering can incur significant overhead. Two of the 
key overheads are increased write lock contention [4] and I/O. To reduce write lock 
contention, most on-line clustering algorithms are designed to be incremental and thus only 
consider a portion of the object base for clustering during each re-organization. However, we 
are aware of only one algorithm Wietrzyk and Orgun [14] that takes care to not to introduce 
extra I/O during the re-organization phase. Wietrzyk and Orgun [14] accomplish this by 
calculating a new placement when the object graph is modified, either by a link (reference) 
modification or object insertion. The algorithm then reclusters the objects that are effected by 
the modification or insertion. Once the new placement is determined, only the objects in 
memory are re-organized and the remaining objects are only re-arranged as they are loaded 
into memory. However, the objects considered for re-organization can include any object in 
the store. The drawback of this approach is that information about any object in the store 
may be needed. OPCF produces algorithms that differ from these algorithms by only 
needing information on objects that are currently in memory and only re-organizing those 
objects. This makes on-line clustering algorithms produced by OPCF more opportunistic than 
existing algorithms. 

A large body of work exists on static clustering algorithms [4-11]. However only relatively few 
static algorithms have been transfered into on-line algorithms. McIver and King [15] 
combined the existing static clustering algorithms. Cactis Hudson and King [16] and DAG 
Banerjee et al. [5] created a new dynamic clustering algorithm. However Hudson and King 
[16] and Banerjee et al. [5] created only sequence-based clustering algorithms which have 
been found to be inferior when compared to graph partitioning algorithms [4]. Wietrzyk and 
Orgun [14] developed a new dynamic graph partitioning clustering algorithm. However their 
graph partitioning algorithm was not compared with any existing static graph partitioning 
clustering algorithm. In this paper two existing static clustering algorithms were transformed 
into on-line clustering algorithms using OPCF and compared to an existing on-line clustering 
algorithm, DSTC [12]. 

2. METHODOLOGY 

2.1. Simulation Setup 

We describe simulations designed to compare the performance of algorithms produced 
using OPCF with two existing state of the art dynamic clustering algorithms, DSTC and 
DRO. We have chosen DSTC and DRO because they are two of the latest dynamic 
clustering algorithms. They are built based on the lessons learnt from many older dynamic 
clustering algorithms. 



Dheeraj Chooramani and Dr. D.K. Pandey 

ISSN: 2249-9970 (Online), 2231-4202 (Print)                                [26]                                                                   Vol. 3(1), Jan 2013 

The simulations are conducted using the virtual object oriented database simulator, VOODB 
[17]. VOODB is based on a generic discrete-event simulation framework. Its purpose is to 
allow performance evaluations of OODBs in general, and optimization methods such as 
clustering in particular. VOODB simulates all of the traditional OODBMS components such 
as: the transaction manager, object manager, buffer manager, and I/O subsystem. The 
correctness of VOODB has been validated for two real-world OODBs, O2 [18] and Texas 
[19]. 

VOODB is very user tunable, offering a number of system parameters such as: system class 
(distribution configuration), page size, buffer size, buffer replacement strategy, etc. The 
parameters relevant to our study along with the values used are depicted in Table 1(a). The 
centralized system class refers to the stand -alone system configuration, in which the clients 
and server both reside on the same machine. Optimized sequential placement refers to 
compact placement (every page has a low percentage of empty space), which is mostly 
placed in creation order. 

Table 1(a): VOODB parameters used. 

In this paper the OCB benchmark [20] is chosen as the tool used for evaluating buffer 
management techniques under stationary access patterns. Here we provide a brief 
description of OCB. In addition, we describe the OCB parameter settings that are used for 
the simulations in this paper. 

The OCB benchmark was initially designed for benchmarking clustering algorithms but its 
rich schema and realistic workloads make it particularly suitable for benchmarking 
prefetching algorithms too. The OCB database has a variety of parameters which make it 
very user-tunable. A database is generated by setting parameters such as total number of 
objects, maximum number of references per class, base instance size, number of classes, 
etc. Once these parameters are set, a database conforming to these parameters is randomly 
generated. The database consists of objects of varying sizes. The parameter shown in 
Table1(b) which are used in the simulations reported in this paper, a total of 200,000 objects 

Parameter Description Value 
System class Centralized 
Disk page size. 4096 bytes 
Buffer size. Varies 
Buffer replacement strategy LRU-2 
Pre-fetching strategy None 
Multiprogramming 1 
Number of users 1 

Object initial placement Optimized sequential 
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are generated. The objects varied in size from 50 to 1600 bytes and the average object size 
is 232 bytes. The total database size is 23 MB. Since this is a small database size we also 
use small buffers (1MB and 4MB) to keep the database to buffer size ratio large. Since we 
are interested in the caching behavior of the system, the database to buffer size ratio is a 
more important parameter than database size alone. 

Table1(b): OCB database parameters. 

Parameter Description Value 
Number of classes in the database 50 
Maximum number of references, per class 10 
Instances base size, per class 50 
Total number of objects 200,000 
Number of references types 4 
References types random distribution Uniform 
Class reference random distribution Uniform 
Objects references random distribution  Uniform 

In this paper we compare the performance of four dynamic clustering algorithms. These 
include two existing algorithms, dynamic statistical tunable clustering (DSTC), detection & 
re-clustering of objects (DRO) and two new OPCF algorithms, dynamic greedy graph 
partitioning (OP-GP) and dynamic probability ranking principle (OP-PRP). 

We introduce skew into the way traversal roots are selected. Roots are partitioned into hot 
and cold regions. In all simulations the hot region is set to 3% of the size of database and 
has an 80% probability of access. These settings are chosen to represent typical database 
application behavior. G. Graefe [21] cited statistics from a real videotext application in which 
3% of the records got 80% of the references. Carey et al. [22] used a hot region size of 4% 
with a 80% probability of being referenced in the HOTCOLD workload used to measure data 
caching trade-offs in client/server OODBMSs. Franklin et al. [23] use a hot region size of 2% 
with a 80% probability of being referenced in the HOTCOLD workload used to measure the 
effects of local disk caching for client/server OODBMSs. 

3. SIMULATION RESULTS  

Here we report the results of simulations comparing the performance of two existing highly 
competitive dynamic clustering algorithms (DSTC, DRO) and two new algorithms produced 
using the OPCF framework (OP-PRP, OP-GP). 
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3.1. Varying Buffer Size 

 
Buffer Size (MB) 

(a) Read only transaction. 

 
Buffer size (MB) 

(b) 10% update transactions. 

Fig.1: Effects of varying buffer size. 
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This experiment was designed to investigate the effects of changing buffer size in two 
different conditions, read only transactions and 10% update transactions. We divided the 
20MB (20000 object) database into hot and cold regions. The hot region was made to be 
1.5% of the total size of the database and 99% of transactions were directed at the hot 
region. 

The results are shown on Figure 1. When updates are introduced into the workload, GP-O 
appears to outperform DTSC-O and DSTC-N algorithms by a large margin. A possible 
explanation for this behavior is that DSTC works at the object grain and thus places each 
newly constructed cluster of objects into a new page. This generates a lot of empty space in 
pages where the cluster size is small. The end result is that objects are more spread out and 
when random updates occur, a larger number of pages are updated, resulting in a larger 
number of write I/Os. This contrasts to the graph partitioning algorithm where multiple 
clusters may reside in the same page and thus random updates are confined to a smaller 
number of pages. 

Secondly, when the buffer size is small the PRP algorithms do not perform as well as GP. 
This result is consistent with the off-line behavior of the algorithms. The reason for this is that 
PRP does not take inter-object relationships into consideration when clustering. In our 
simulations, increasing the parameters Tfa, Tfe and Tfc by the smallest possible increment 
causes the algorithms to go from over excessive clustering to almost no clustering (both 
settings result in about the same performance). Here 

Tfa = Threshold value under which the number of accesses to individual objects is too small 
to be considered in elementary linking factors computation. 
Tfe= Threshold value under which elementary linking factors are not consider for updating 
consolidation factors. 

Tfc= Threshold value under which a consolidated linking factors are not considered 
significant. 

The results shown are when the more aggressive clustering setting is used. We have tested 
all algorithms extensively with different parameters settings and only used the settings that 
gave the best overall performance for each algorithm. 

3.2. Varying Hot Region Size 

Here we examine the effect of changing hot region size on the dynamic clustering algorithm 
performance. The hot region probability of access is set to 80%. The results for two buffer 
size settings of 1MB and 4MB are reported in Figures 2(a) and 2(b), respectively. The results 
in this simulation showed that OP-GP providing best overall performance. We attribute this 
mainly to its use of opportunism and its use of sequence tension to model access 
dependencies between objects. At the small buffer size of 1MB, OP-GP’s performance 
degrades at a slower rate than DRO, the best existing dynamic clustering algorithm. The 
reason for this is that increasing the hot region size has the effect of increasing the working 
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set size. A larger working set means more objects will have higher usage rates. This in turn 
means DRO, which only clusters pages with usage rates above the minimum UR threshold, 
clusters more aggressively as working set size increases. As the hot region size increases, a 
larger portion of the working set is disk resident. DRO, which is not opportunistic, performs 
more clustering read I/O since a larger portion of the working set is disk resident. DRO also 
performs more clustering write I/Os as the hot region size increases. This is because as 
more pages are loaded into memory for clustering purposes, more dirty pages are evicted 
(working set does not fit in memory). Dirty page evictions causes write I/O. In contrast, OP-
GP’s opportunistic behavior combined with its bounded scope of re-organization results in a 
smaller clustering I/O footprint, for both small and large hot region sizes. At the larger buffer 
size of 4MB (Figure 2(b)), almost all of the working set fits in memory (even when the hot 
region size is 9% of database size). In this environment, DRO’s performance approaches 
that of OP-GP as the hot region size increases. This is because as more of the working set 
fits in memory, DRO’s lack of opportunism is less damaging to its performance. Since most 
of the pages it wants to cluster are memory resident, less clustering read I/O is required. 
Clustering write I/Os are also decreased due to fewer dirty page evictions. 

 
               Hot Region Size (% of DB) 

2(a): 1MB buffer size. 
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      Hot Region Size(% of DB) 

2(b): 4MB buffer size. 

Fig. 2: Hot region size versus Total I/O. 

3.3. Varying Hot Region Access Probability Size 

Here we report the effects of changing hot region access probability. The hot region is set to 
3% of the database size. The results of two buffer size settings of 1MB and 4MB are 
reported on Figures 3(a) and 3(b), respectively. The results for 1MB buffer size show OP-GP 
offering the best performance at small hot region access probabilities. However, when hot 
region access probability is high, OP-GP’s performance degrades to be worse than DRO. 
The reason for OP-GP’s success at low access probabilities is OP-GP’s ETT threshold and 
opportunism protects it from aggressive re-clustering of the cold region. In contrast, DRO 
does not have these features. Thus at these settings DRO finds it difficult to distinguish 
between the hot and cold region (the difference between access probability of hot and cold 
region is small), and consequently re-clusters much of the cold region aggressively. The 
result is that DRO generates a lot of clustering read and write I/O overheads for marginal 
transaction read I/O gains. However, when hot region access probability is high, OP-GP’s 
ETT threshold starts to work against it. This is because ETT restricts re-clustering (even in 
the hot region) to those pages that give the largest performance improvement. In contrast, 
DRO, which aggressively re-clusters the hot region, benefits from improved transaction read 
I/O gains. At high hot region access probabilities, DRO no longer has difficulty separating the 
hot and cold region for re-clustering. Thus it no longer spends clustering I/O resources for re-
clustering the cold region. The results for the 4MB buffer size as seen in Figure 3(b) again 
showed that OP-GP offering best performance when hot region access probability is low. 
When hot region access probability is high, OP-GP and DRO perform approximately the 



Dheeraj Chooramani and Dr. D.K. Pandey 

ISSN: 2249-9970 (Online), 2231-4202 (Print)                                [32]                                                                   Vol. 3(1), Jan 2013 

same. The reason for OP-GP’s superior performance at low hot region access probabilities 
is the same as for the 1MB buffer size results. However, at high hot region access 
probabilities, the larger buffer size is more forgiving for OP-GP’s lack of aggression in re-
clustering the hot region. Thus OP-GP’s performance no longer degrades to worse than 
DRO at high hot region access probabilities. DSTC, which has been set to re-cluster 
aggressively (at low aggression settings it performs almost no re-clustering and there is no 
middle ground), shows rapid performance improvement when hot region access probability 
increases. This is because at high hot region access probabilities, aggressive re-clustering is 
confined to primarily the hot region (the cold region rarely gets touched and thus is rarely re-
clustered). This fact means DSTC’s clustering I/O overheads rapidly diminish as the hot 
region access probability increases. 

 
Hot Region Probability 

3(a): 1MB buffer size. 
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Hot Region Probability 

3(b): 4MB buffer size. 

Fig. 3: Hot region probability Vs Total I/O. 

3.4. Moving Window of Change 

In this simulation, we used the moving window of change protocol to test each of the 
dynamic clustering algorithms’ ability to adapt to changes in access pattern. In this 
simulation we varied the parameter H, rate of access pattern change. We report the results 
using 1MB and 4MB buffer sizes. The results are shown on Figure 4(a) and 4(b), 
respectively. The X-axis in the graphs is in log2 scale. The general observation is that OP-
GP offers poor performance when the rate of access pattern change is small but offers best 
performance (when compared to the other dynamic clustering algorithms) when the rate of 
access pattern change is high. The poor performance of OP-GP under small rate of access 
pattern changes is that OP-GP has not been designed for this vigorous style of change 
(where the hot region changes suddenly from 0.8 probability of access to 0.0006 probability 
of access). The other algorithms, DSTC and DRO, periodically delete gathered statistics 
which makes them cope much better in this style of change. However, when the rate of 
access pattern change is very high, DSTC and DRO suffer from over aggressive re-
clustering. Both DSTC and DRO do not place hard bounds on the scope of re-organization. 
This causes them to re-cluster vigorously at high rates of access pattern change (the 
clustering on many pages appear to be outdated). Much of the hard re-clustering work goes 
to waste, since re-clustered pages quickly get outdated. In contrast, OP-GP and OP-PRP, 
which place hard limits on the scope of re-organization, perform better at higher rates of 
access pattern change. 
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Parameter H (rate of access pattern change) 

4(a): 1MB buffer size. 

 
Parameter H (rate of access pattern change) 

4(b): 4MB buffer size. 

Fig. 4: Moving window of change. 
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3.5. Gradual Moving Window of Change Simulation 

In this simulation, we used a less vigorous style of access pattern change, the gradual 
moving window of change protocol. Unlike the previous simulation, the hot region cools 
gradually instead of suddenly. In this simulation we varied the parameter H, rate of access 
pattern change. We report the results using 1MB and 4MB buffer sizes. The results are 
shown on Figure 5(a) and 5(b), respectively. The X-axis in the graphs is in log2 scale. The 
results show OP-GP consistently outperforming the other dynamic clustering algorithm when 
this gradual style of change is used. This is due to OP-GP’s policy of not deleting old 
statistics, which is beneficial instead of detrimental to clustering quality in this simulation. 
The gradual cooling of the hot region means that as the hot region cools a lot of residual 
heat remains. OP-GP, which never deletes old statistics, continues to re-cluster the slowly 
cooling hot region. 

 
Parameter H (rate of access pattern change) 

5(a): 1MB buffer size. 
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Parameter H (rate of access pattern change) 

5(b): 4MB buffer size. 

Fig. 5: Gradual moving window of change. 

4. CONCLUSION 

In this paper we have presented Opportunistic Priority Clustering Framework, which when 
applied to static clustering algorithms, can produce dynamic clustering algorithms that 
possesses the two desirable properties of opportunism and prioritization of clustering. In 
accumulation, application of the framework is uncomplicated and yet it produces clustering 
algorithms that surpass an existing highly cutthroat dynamic clustering algorithm, DSTC [3], 
in a variety of situations. The outcome in this paper test the dynamic clustering algorithms in 
ample variety of situations, hot region sizes, hot region access probabilities, including 
various buffer sizes and various rates of access pattern change. The results show that the 
OPCF algorithm, OPCF with greedy graph partitioning offers best recital in nearly all 
situations. OPCF with greedy graph partitioning derives its recital advantage mainly from its 
opportunistic behavior and its use of sequence tension to model access enslavement 
between objects. Opportunism reduces OP-GP’s clustering I/O overhead, while sequence 
tension allows OPCF with greedy graph partitioning to achieve high clustering quality. The 
combination of low clustering I/O overhead and high clustering quality gives OPCF with 
greedy graph partitioning the best overall performance. The result in this paper is same as in 
[24] but our parameter is different from other. 
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